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Abstract
In Merton (1971) the closed form solution of the Hamilton-Jacobi-Bellman equation arising from the classical
optimal consumption-investment problem associated with the HARA utility function is simply stated without
derivation. We analyze the point symmetry group admitted by the equation and construct a more general
exact solution than the previously published one.
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1. Introduction

In two pioneering papers Merton (1969, 1971) the Nobel Memorial Prize in Economic Sciences laureate
Robert C. Merton formulated the prototypical optimal consumption-investment problem of continuous-time
finance; the proposed solution is the tour de force application of stochastic calculus and optimal control
techniques which culminated in the explicit integration of a complicated nonlinear Hamilton-Jacobi-Bellman
(HJB) equation, albeit without intermediate derivation steps. Specifically, the HJB equation of the value
function u(t, w) (in this chapter we rename the dependent variable J to u) associated with the HARA utility
function and the zero terminal condition (Merton (1971, (44)))
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the optimal fraction of wealth q⋆ invested in the risky asset and the optimal consumption rate c⋆ can
be readily acquired by partial differentiations of this exact solution (Merton (1971, (45), (46)); see (10)).
However, in Merton (1971) the result (2) is stated without hints as to the method of derivation.

As opposed to the ad hoc “guess but verify” approach of constructing exact solutions, there exists a
systematic method, namely the Lie group analysis, which facilitates the understanding of the nature of the
problem and in many occasions proposes the solution sought after. In a nutshell, Lie group analysis exploits
the inherent symmetry structure of the equation to be solved both geometrically and algebraically and
immensely simplifies the integration. The discipline has been developed for over a century; with the advent
of modern computer algebra systems, the implementation of the procedure has been made easier than ever
and deserves to be better known among researchers and professionals. One of the first applications of Lie
group analysis in financial studies is the seminal paper Gazizov and Ibragimov (1998) which investigates the
symmetries and invariant solutions of the familiar Black-Scholes equation
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with constants A to H. Since then a series of papers adopt the Lie group analysis methodology for solving
PDEs in finance and most of them originated from option pricing problems; among the few exceptions, the
Bordag and Yamshchikov (2017) paper is the closest to the present note as both consider the reduction of
the Hamilton-Jacobi-Bellman equation arising in portfolio optimization.

In this note we begin by briefly reviewing the prototypical optimal consumption-investment problem
proposed in Merton (1971) and supply some details which were glossed over or missing in the classic paper.
Subsequently minimal facts of Lie group analysis needed for our investigation are introduced in a practical
manner. Afterwards we perform the thorough analysis of the symmetry group admitted by Merton’s equation
(1) and derive a slightly different exact solution
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which encompasses Merton’s solution (2) as a particular case. This seemingly small discrepancy actually
exposes the deficiency of Merton’s treatment and is independent of the first documented arguments in Sethi
and Taksar (1988). Finally, discussions conclude the note.

2. Optimal Consumption-Investment Problem Revisited

Here we follow the heuristic approach of Sethi (2019) to delineate the problem. Let the wealth of an
investor consists of a riskless asset p0 with price dynamics

dp0 = p0 r dt (4)

and l risky assets p1, p2, . . . , pl with price dynamics

dpi = pi
(
αi dt+ ei S dZ⊤) , i = 1, 2, . . . , l. (5)

where r and αi are constants with each αi > r, ei = ( 0 ... 0 1 0 ... 0 ) is a 1 × l row vector with 1 in the
i-th place and 0 elsewhere, S is a l × l matrix such that SS⊤ is positive definite, and Z is the 1 × l
multidimensional standard Wiener process. Let q ≡ q(t) = ( q1(t) q2(t) ... ql(t) ) be the 1× l weight vector such
that the i-th component qi(t) is the fraction of wealth invested in the i-th asset at time t,

∑l
i=0 qi(t) = 1
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and c ≡ c(t) be the consumption rate process. Set 1× l vectors α ≡ ( α1 α2 ... αl ) and 1 with all entries are
1, the wealth process w evolves as

dw =
(
w
(
r + (α− r1) q⊤)− c

)
dt+ w q S dZ⊤ (6)

To establish (6), let ni ≡ ni(t) be the number of shares in i-th asset at time t and 0 < h� 1, then

w(t) =
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=

l∑
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Substitute (4), (5) back, (6) is readily obtained. Here in Merton’s setup l = 1 and (6) becomes

dw = (w (1− q) r + w q α− c) dt+ w q σ dZ

The optimal consumption-investment problem is to find c, q which maximize the functional

E0

{∫ T

0

e−ρτ U(c(τ)) dτ +B(w(T ), T )

}
(7)

where T is a fixed terminal time, ρ > 0 is the discount factor, together with the utility function U of the
investor and the bequest function B. Define the value function u(t, w) as

u(t, w) = max
c, q

Et

{∫ T

t

e−ρτ U(c(τ), τ) dτ +B(w(T ), T )

}
then by the principle of optimality

u(t, w) = max
c, q

Et
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}
(8)

Applying Itô lemma to expand the term u(t+ dt, w + dw),
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Substitute back in (8) and note that Et {uww q σ dZ} = 0, we have

0 = max
c, q

{
e−ρt U(c) + ut + uw (w (1− q) r + w q α− c) +

1

2
uwww

2q2σ2

}
(9)

Differentiate (9) with respect to q and equate to zero, the first order condition gives the maximizer q⋆ as

−uww r + uwwα+ uwww
2σ2q⋆ = 0 =⇒ q⋆ = − (α− r)uw

σ2wuww
(10)

If the utility function U belongs to the HARA (Hyperbolic Absolute Risk-Adverse) family, there exists
constants γ, β, ν such that

U(c) =
1− γ

γ

(
β c

1− γ
+ ν

)γ

,

and U ′(c) = β
(

β c
1−γ + ν

)γ−1

; differentiate (9) with respect to c and equate to zero, the first order condition
gives

e−ρt U ′(c⋆)− uw = 0 =⇒ c⋆ =
1− γ

β

(
eρtuw
β

) 1
γ−1

− ν(1− γ)

β
(11)

Substitute back the expressions (11), (10) of c⋆ and q⋆ respectively into (9), we arrive at the equation (1);
the boundary condition is

u(T,w) = B(T,w(T )). (12)

In Merton (1971), the bequest function B is taken to be zero for simplicity.

3. Rudiments of Lie Group Analysis

Here we state the essential facts of Lie group analysis directly related to our contruction of exact solutions.
Our exposition follows Ibragimov (1999); further details can be found in Stephani (1989); Hydon (2000);
Bluman and Kumei (1989); Anco and Bluman (2002); Bluman et al. (2010); Olver (1993); Ovsiannikov
(1982). Olver (1993); Ovsiannikov (1982) provide rigorous treatment of the theoretical framework and its
ramifications.

Symmetry Group. Infinitesimal Transform. Generators

For m independent variables denoted by x = (x1, x2, . . . , xm) ≡ {xi} and n dependent variables denoted
by u = (u1, u2, . . . , un) ≡ {uα} (i.e. each uα is a function of x), consider the invertible transformation
Tε : (x, u) 7→ (x, u) consists of

xi = ϕi(x, u, ε), ϕi|ε=0 = xi, i = 1, 2, . . . ,m

uα = ψα(x, u, ε), ψα|ε=0 = uα, α = 1, 2, . . . , n.
(13)

with smooth functions ϕi, ψα and parameter ε; such transformations {Tε}ε∈R form an one-parameter local
group G if

1. (Identity) I ∈ G.
2. (Inverse) T−1

ε = T−ε ∈ G.
3. (Composition) Tε1 ◦ Tε2 ∈ G if Tε1 , Tε2 ∈ G.
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For such an one-parameter local group G, using Taylor expansion with respect to ε in a neighborhood of
ε = 0, equation (13) satisfied by Tε become

xi = xi + ξi(x, u) ε+O(ε2), ξi(x, u) =
∂ϕi(x, u, ε)

∂ε

∣∣∣∣
ε=0

, i = 1, 2, . . . ,m.

uα = uα + ηα(x, u) ε+O(ε2), ηα(x, u) =
∂ψα(x, u, ε)

∂ε

∣∣∣∣
ε=0

, α = 1, 2, . . . , n.

(14)

This is the infinitesimal transformation of G, and the generator of G, denoted by X, is defined as

X = ξi(x, u) ∂xi + ηα(x, u) ∂uα (15)

where ∂xi ≡ ∂
∂xi is the partial differential operator with respect to the variable xi. We invoke and tacitly

assume afterwards the repeated indices summation convention. For instance, ξi(x, u) ∂xi should be under-
stood as

∑m
i=1 ξ

i(x, u) ∂xi , and so on. Hereafter u(k) stands for the set of all derivatives of u = {uα} with
order k ⩾ 1, i.e. u(1) = {uαi1}, u(2) = {uαi1i2}, etc.

Prolongation

Given the transformation (13) of a group G which maps (x, u) to (x, u), transformations for derivatives
can be obtained by means of the chain rule of the differential calculus; the extended transformation which
maps (x, u, u(1), u(2), . . . , u(k)) to (x, u, u(1), u(2), . . . , u(k)) with integer k ⩾ 1 also forms a group and the
extension process is called the prolongation.

To illustrate the extension process, we begin by first examine the simplest case m = n = 1. In this case,
set x ≡ x1 , y ≡ u1, the infinitesimal transformation (14) reads

x = x+ ε ξ(x, y) +O(ε2), y = y + ε η(x, y) +O(ε2).

and the aim is to use this knowledge to get

y(i) = y(i) + ε ηi +O(ε2), i = 1, 2, . . . (16)

Define the total differentiation operator Dx as

Dx = ∂x + y′∂y + y′′∂y′ + · · ·+ y(k)∂y(k−1) + · · ·

Note that x, y are functions of x, y; by the chain rule and (13),

y(1) =
dy
dx =

ψx dx+ ψy dy
ϕx dx+ ϕy dy =

ψx + y′ψy

ϕx + y′ϕy
=

Dx(y)

Dx(x)

so

y(1) =
Dx(y)

Dx(x)
=
y′ + εDx(η) +O(ε2)

1 + εDx(ξ) +O(ε2)

=
(
y′ + εDx(η) +O(ε2)

) (
1− εDx(ξ) +O(ε2)

)
= y′ + ε (Dx(η)− y′Dx(ξ)) +O(ε2)

and in view of (16),

η1 = Dx(η)− y′ Dx(ξ).
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The process continues indefinitely as

y(k) =
Dx(y

(k−1))

Dx(x)
=
y(k) + εDx(ηk−1) +O(ε2)

1 + εDx(ξ) +O(ε2)

=
(
y(k) + εDx(ηk−1) +O(ε2)

) (
1− εDx(ξ) +O(ε2)

)
= y(k) + ε (Dx(ηk−1)− y(k) Dx(ξ)) +O(ε2)

with

ηk = Dx(ηk−1)− y(k) Dx(ξ)

Full expansions of η1, η2, and η3 are

η1 = ηx + (ηy − ξx) y
′ − ξy y

′2 (17)
η2 = ηxx + (2 ηxy − ξxx) y

′ + (ηyy − 2 ξxy) y
′2 − ξyy y

′3 + (ηy − 2 ξx − 3 ξy y
′) y′′ (18)

η3 = ηxxx + (3 ηxxy − ξxxx) y
′ + 3 (ηxyy − ξxxy) y

′2 + (ηyyy − 3 ξxyy) y
′3 − ξyyy y

′4

+ 3
(
ηxy − 2 ξxx + (ηyy − 3 ξxy) y

′ − 2 ξyy y
′2) y′′ − 3 ξy y

′′2 + (ηy − 3 ξx − 4 ξy y
′) y′′′ (19)

Starting from the original symmetry group with generator X,

X = ξ ∂x + η ∂y

the generator of the k-th extended group, denoted by X(k), is given by

X(k) = ξ ∂x + η ∂y + η1 ∂y′ + · · ·+ ηk ∂y(k)

For the general case, define the total differentiation operator Di ≡ Dxi as

Di = ∂xi + uαi ∂uα + uαi i1∂uα
i1
+ uαi i1i2∂uα

i1i2
+ · · · (20)

By means of the chain rule,

Di =

(
∂ϕj

∂xi
+ uαi

∂ϕj

∂uα

)
Dj = Di(ϕ

j)Dj (21)

where Dj ≡ Dxj and the repeated indices summation convention is used. Note that

uαi = Di(u
α), uαij = Dj(u

α
i ) = Dj Di(u

α).

By (21) and (13)

uαj Di(ϕ
j) = Di(ψ

α) (22)

Assuming (14), we wish to get the prolongations

uαi1...is = uαi1...is + ε ζαi1...is +O(ε2), s = 1, 2, . . . (23)

and each integer 1 ⩽ is ⩽ m and 1 ⩽ α ⩽ n. For s = 1, the first extended transformation reads

uαi = uαi + ε ζαi +O(ε2) (24)

with i ≡ i1 and ζαi to be determined. From (14), ϕj = xj + ε ξj , ψα = uα + ε ηα, so Di(ϕ
j) = δij + εDi(ξ

j),
Di(ψ

α) = Di(u
α) + εDi(η

α) = uαi + εDi(η
α). Substitute into (22) and it becomes a system of linear

equations

uαi + εDi(ξ
j)uαj = uαi + εDi(η

α), 1 ⩽ i ⩽ m.
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Set u = ( uα
1 uα

2 ... uα
m )

⊤, u = ( uα
1 uα

2 ... uα
m )

⊤, η = (D1(η
α) D2(η

α) ... Dm(ηα) )
⊤, and (A)ij = Di(ξ

j), this linear
system can be rewritten as

(I + εA)u = u+ εη (25)

For small ε, (I + εA)
−1

= (I − εA) +O(ε2) and (25) becomes

u = (I − εA) (u+ εη) +O(ε2) = u+ ε (η−Au) +O(ε2) (26)

Comparing with (24) and spelling out the expression componentwise, we have

ζαi = Di(η
α)− uαj Di(ξ

j) (27)

Similarly, the second extended transformation reads

uαi1i2 = uαi1i2 + ε ζαi1i2 +O(ε2) (28)

with ζαi1i2 to be determined. Applying (21) to uαi1 with i = i2,

Di2(ϕ
j)Dj(u

α
i1) = Di2(u

α
i1) (29)

Note that Di2(ϕ
j) = δi2j + εDi2(ξ

j), Dj(u
α
i1) = uαi1j , and Di2(u

α
i1) = Di2(u

α
i1

+ ε ζαi1 + O(ε2)) = uαi1i2 +
εDi2(ζ

α
i1
) +O(ε2)). Substitute into (29), it becomes a system of linear equations

uαi1i2 + εDi2(ξ
j)uαi1j = uαi1i2 + εDi2(ζ

α
i1), 1 ⩽ i2 ⩽ m. (30)

which resembles the system (25) previously solved; imitating the steps we have

ζαi1i2 = Di2(ζ
α
i1)− uαj i1Di2(ξ

j)

= Di2Di1(η
α)− uαj Di2Di1(ξ

j)− uαj i1Di2(ξ
j) (31)

and the general expression reads

ζαi1...is = Dis(ζ
α
i1...is−1

)− uαj i1...is−1
Dis(ξ

j). (32)

By writing Wα = ηα − ξjuαj ,

ζαi1...is = Di1 · · ·Dis(W
α)− ξjuαj i1...is , s = 1, 2, . . . (33)

Starting from the original symmetry group with generator X,

X = ξi ∂xi + ηα ∂uα

the generator of the k-th extended group, denoted by X(k), is given by

X(k) = ξi ∂xi + ηα ∂uα + ζαi1 ∂uα
i1
+ . . .+ ζαi1i2...ik ∂uα

i1i2...lk
(34)

Determining Equations

The notion of prolongation is indispensable in view of the following theorem. Consider a typical system
of (possibly nonlinear) equations

Fj(x) = 0, j = 1, 2, . . . , l

with x ∈ Rn, l < n, and

rank

∣∣∣∣∂Fj(x)

∂xi

∣∣∣∣ = l x ∈ V.

where ∂Fj(x)
∂xi is the jacobian and V ⊆ Rn is the set of solutions. Given a transformation group G with

x = ϕ(x, ε) and the generator X, the system is said to be invariant with respect to G, or admits G, if

Fj(x) = 0 ∀x ∈ V and j = 1, 2, . . . , l.
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Theorem. The typical system of equations admits G if and only if

XFj(x) = 0 ∀x ∈ V and j = 1, 2, . . . , l.

This theorem provides the key to the algorithmic determination of the symmetry group admitted by a
given system of differential equations, which in turn generates exact solution candidates that can be exploited
further. Specifically, for a typical system of differential equations

Fj

(
x, u, u(1), u(2), . . . , u(k)

)
= 0, j = 1, 2, . . . , l

and V its solution manifold, the condition that the system admits the symmetry group G with infinitesimal
transform (14) is

X(k)Fj

(
x, u, u(1), u(2), . . . , u(k)

)
= 0 ∀u ∈ V and j = 1, 2, . . . , l. (35)

where X(k) is the generator of the k-th extended group of G given by (34); (35) will be referred to as
symmetry condition. The resulting system of differential equations of (35) with unknown ξ’s and η’s are
called determining equations. To solve the determining equations may seem daunting at first, but the
overdetermined nature of the system often yield substantial simplifications; the whole solution process is
best illustrated through detailed examples.

We consider the simplest case m = n = 1 first. Given a second-order ODE of the form

y′′ = H(x, y, y′)

the symmetry condition is

X(2) (y
′′ −H(x, y, y′)) = 0,

i.e. X(2)y
′′ = X(2)H. From

X(2) = ξ ∂x + η ∂y + η1 ∂y′ + η2 ∂y′′ ,

X(2)y
′′ = η2 and X(2)H = ξ Hx + η Hy + η1Hy′ ; substitute the expressions of η1, η2 in (17), (18) and note

that y′′ = H, the symmetry condition X(2)y
′′ = X(2)H becomes

ηxx + (2 ηxy − ξxx) y
′ + (ηyy − 2 ξxy) y

′2 − ξyy y
′3 + (ηy − 2 ξx − 3 ξy y

′)H

= ξ Hx + η Hy +
(
ηx + (ηy − ξx) y

′ − ξy y
′2)Hy′ (36)

As an example, we determine the symmetry group admitted by the second-order nonlinear ODE

y′′ =
y′2

y
− y2

In this case H(x, y, y′) = y′2

y − y2, so Hx = 0,Hy = −y′2

y2 − 2y,Hy′ = 2 y′

y . Applying (36), we have

ηxx + (2 ηxy − ξxx) y
′ + (ηyy − 2 ξxy) y

′2 − ξyy y
′3 + (ηy − 2 ξx − 3 ξy y

′)

(
y′2

y
− y2

)
= η

(
−y

′2

y2
− 2y

)
+
(
ηx + (ηy − ξx) y

′ − ξy y
′2) 2y′

y

Collecting all powers of y′ and equating to zero, we have

ξyy +
1

y
ξy = 0 (37)

ηyy − 2 ξxy −
1

y
ηy +

1

y2
η = 0 (38)

2 ηxy − ξxx + 3y2 ξy −
2

y
ηx = 0 (39)

ηxx − y2(ηy − 2 ξx) + 2 y η = 0 (40)
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From (37)

ξ = A(x) log |y|+B(x)

with A(x), B(x) to be determined. From (38) and above we have

η = A′(x) y (log |y|)2 + C(x) y log |y|+D(x) y

Substitute ξ, η into (39), we have

3A′′(x) log |y|+ 3A(x) y + 2C ′(x)−B′′(x) = 0

and it holds for all y, so

A(x) = 0, B′′(x) = 2C ′(x). (41)

Now (40) becomes

C(x) y2 log |y|+ C ′′(x) y log |y|+ (2B′(x)− C(x) +D(x)) y2 +D′′(x) y = 0

which splits into

C(x) = 0, D(x) = −2B′(x), D′′(x) = 0 (42)

From (41), (42)

ξ = c1 + c2 x, η = −2c2 y

so the generator X of the admitted symmetry group is

X = c1X1 + c2X2, X1 = ∂x, X2 = x ∂x − 2y ∂y. (43)

Invariant Solution

For G is a symmetry group of a typical system of differential equations

Fj

(
x, u, u(1), u(2), . . . , u(k)

)
= 0, j = 1, 2, . . . , l

if

Fj

(
x, u, u(1), u(2), . . . , u(k)

)
= 0, j = 1, 2, . . . , l

Under actions of the admitted symmetry group, transformed solutions still satisfy the system; those unaltered
solutions are called the invariant solution and can be obtained by first computing the invariants of G via
solving the PDE

X(I) = ξi(x, u) ∂xiI + ηα(x, u) ∂uαI = 0 (44)

or equivalently integrating its characteristic system

dx1
ξ1(x, u)

=
dx2

ξ2(x, u)
= · · · = dxm

ξm(x, u)
=

du1
η1(x, u)

=
du2

η2(x, u)
= · · · = dun

ηn(x, u)
(45)

Now the symmetry group has m− 1 + n invariants

λ1(x), λ2(x), . . . , λm−1(x), Φ1(x, u),Φ2(x, u), . . . ,Φn(x, u).

It can be shown that

Φα(x, u) = Ψα(λ1(x), λ2(x), . . . , λm−1(x))

for Ψα to be determined; solve for u and substitute the result back into the original system to get a new
system comprised of Ψ’s and λ’s.
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4. Symmetry Group Admitted by Merton’s Equation

In this case m = 2, n = 1 and we set t ≡ x1, w ≡ x2, u ≡ u1, and η ≡ η1. X, the generator of the
symmetry group admitted by Merton’s equation (1)

δ2β
γ
δ

γ
e−

ρ
δ tu

− γ
δ

w + ut +

(
δν

β
+ rw

)
uw − δ(µ− r)

u2w
uww

= 0; u(T,w) = 0.

is

X = ξ1(t, w, u) ∂t + ξ2(t, w, u) ∂w + η(t, w, u) ∂u (46)

and X(2), the generator of the second extended group is

X(2) = ξ1∂t + ξ2∂w + η ∂u + ζ1 ∂ut
+ ζ2 ∂uw

+ ζ11 ∂utt
+ ζ12 ∂utw

+ ζ22 ∂uww
(47)

with

ζ1 = Dt(η)− utDt(ξ
1)− uwDt(ξ

2) ζ2 = Dw(η)− utDw(ξ
1)− uwDt(ξ

2)

ζ11 = Dt(ζ1)− uttDt(ξ
1)− utwDt(ξ

2) ζ12 = Dw(ζ1)− uttDw(ξ
1)− utwDw(ξ

2)

ζ22 = Dw(ζ2)− utwDw(ξ
1)− uwwDw(ξ

2)

where the total differentiation opertors Dt, Dw are denoted by

Dt = ∂t + ut∂u + utt∂ut
+ utw∂uw

+ · · · , Dw = ∂w + uw∂u + utw∂ut
+ uww∂uw

+ · · · .

Expanding the terms by total differentiations, we have

ζ1 = ηt + utηu − utξ
1
t − (ut)

2ξ1u − uwξ
2
t − utuwξ

2
u

ζ2 = ηw + uwηu − utξ
1
w − utuwξ

1
u − uwξ

2
w − (uw)

2ξ2u

ζ11 = ηtt + 2utηtu + uttηu + (ut)
2ηuu − 2uttξ

1
t − utξ

1
tt − 2(ut)

2ξ1tu − 3ututtξ
1
u

− (ut)
3ξ1uu − 2utwξ

2
t − uwξ

2
tt − 2utuwξ

2
tu − (uwutt + 2ututw)ξ

2
u − (ut)

2uwξ
2
uu

ζ12 = ηtw + uwηtu + utηwu + utwηu + utuwηuu − utw(ξ
1
t + ξ2w)− utξ

1
tw − uttξ

1
w − utuw(ξ

1
tu + ξ2wu)− (ut)

2ξ1wu

− (2ututw + uwutt)ξ
1
u − (ut)

2uwξ
1
uu − uwξ

2
tw − uwwξ

2
t − (uw)

2ξ2tu − (2uwutw + utuww)ξ
2
u − ut(uw)

2ξ2uu

ζ22 = ηww + 2uwηwu + uwwηu + (uw)
2ηuu − 2uwwξ

2
w − uwξ

2
ww − 2(uw)

2ξ2wu − 3uwuwwξ
2
u − (uw)

3ξ2uu

− 2utwξ
1
w − utξ

1
ww − 2utuwξ

1
wu − (utuww + 2uwutw)ξ

1
u − ut(uw)

2ξ1uu

Aided by the open-source computer algebra system Maxima with subroutine symmgrp2020 (Champagne
et al. (1991); Hereman (1997)), we arrive at the set of 24 determining equations:

ηw(γ − 1)e
tγρ
γ−1−tρ = 0 (48)

ηw(r − α)2 = 0 (49)
ηww(r − α)2 = 0 (50)

ξ1u(γ − 1)3e
2tγρ
γ−1 −2tρ = 0 (51)

ξ1w(γ − 1)3e
2tγρ
γ−1 −2tρ = 0 (52)

w ηw βr − ηw νγ + ηw ν + ηt β = 0 (53)
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ξ1uu(r − α)4 = 0 (54)
ξ1uw(r − α)4 = 0 (55)
ξ1ww(r − α)4 = 0 (56)
ξ1u(r − α)4 = 0 (57)
ξ1w(r − α)4 = 0 (58)

β− γ
γ−1−1(γ − 1)

{
w ξ1u βr − ξ1u νγ + ξ1u ν − ξ2u β

}
e

tγρ
γ−1−tρ = 0 (59)

ξ1u (γ − 1)(2γ − 1)(r − α)2e
tγρ
γ−1−tρ = 0 (60)

ξ1w (γ − 2)(γ − 1)(r − α)2e
tγρ
γ−1−tρ = 0 (61)

ξ1uu (γ − 1)2(r − α)2e
tγρ
γ−1−tρ = 0 (62)

ξ1uw (γ − 1)2(r − α)2e
tγρ
γ−1−tρ = 0 (63)

ξ1ww (γ − 1)2(r − α)2e
tγρ
γ−1−tρ = 0 (64)

(r − α)2
{
w ξ1u βr − ξ1u νγ + ξ1u ν − ξ2u β

}
= 0 (65)

(r − α)2
{
w ξ1w βr − ξ1w νγ + ξ1w ν + ξ1t β

}
= 0 (66)

(r − α)2
{
w ξ1uu βr − ξ1uu νγ + ξ1uu ν − ξ2uu β

}
= 0 (67)

w2 ξ1w β
2r2 − 2w ξ1w βνγr + 2w ξ1w βνr − w ξ2w β

2r + w ξ1t β
2r + ξ2β2r + ξ1w ν

2γ2 − 2 ξ1w ν
2γ

+ ξ2w βνγ − ξ1t βνγ + ξ1w ν
2 − ξ2w βν + ξ1t βν − ξ2t β

2 = 0 (68)

β− γ
γ−1−1(γ − 1)

{
ξ1 βρ+ 2w ξ1w βγr − w ξ1w βr − 2 ξ1w νγ

2 + 3 ξ1w νγ

ξ2w βγ + ξ1t βγ − ξ1w ν + ηu β − ξ1t β
}
e

tγρ
γ−1−tρ = 0 (69)

(r − α)2
{
2w ξ1uw βrσ

2 + 2 ξ1u βrσ
2 − 2 ξ1uw νγσ

2 + 2 ξ1uw νσ
2

−2 ξ2uw βσ
2 + ηuu βσ

2 − 2 ξ1u βr
2 + 4 ξ1u αβr − 2 ξ1u α

2β
}
= 0 (70)

(r − α)2
{
w ξ1ww βrσ

2 + 2 ξ1w βrσ
2 − ξ1ww νγσ

2 + 2 ξ1ww νσ
2

−ξ2ww βσ
2 + 2ηuw βσ

2 − ξ1w βr
2 + 2 ξ1w αβr − ξ1w α

2β
}
= 0 (71)

It is clear that most of the determining equations simply characterize the functional dependence of
ξ1, ξ2, and η with respect to variables t, w, and u. Here we list step-by-step instructions on solving the
overdetermined system — each of the step makes full use of all previously obtained results:
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• From (48)(49)(50)
η ≡ η(t, u)

• From (51)
ξ1 ≡ ξ1(t, w)

• From (52)(54)(55)(56)(57)(58)(60)(61)(62)(63)(64)

ξ1 ≡ ξ1(t)

• From (53)
η ≡ η(u)

• From (59)(65)(67)
ξ2 ≡ ξ2(t, w)

• From (66)
ξ1 = const ≡ c3

• From (70)
ηuu = 0 =⇒ η(u) = c1u+ c2

• From (71)
ξ2ww = 0 =⇒ ξ2(t, w) = f1(t)w + f2(t)

• From (69)

ξ1βρ− ξ2w βγ + ηu β = 0 =⇒ c3ρ− f1(t)γ + c1 = 0

=⇒ f1(t) =
c1 + c3ρ

γ

• From (68)

− w ξ2w β
2r + ξ2β2r + ξ2w βνγ − ξ2w βν − ξ2t β

2 = 0

=⇒ −wc1 + c3ρ

γ
β2r +

(
c1 + c3ρ

γ
w + f2(t)

)
β2r − c1 + c3ρ

γ
βδν − f ′2(t)β

2 = 0

=⇒ f2(t)βr −
c1 + c3ρ

γ
δν − f ′2(t)β = 0

=⇒ f2(t) =

(
c4 −

(c1 + c3ρ) δν

γβr

)
ert +

(c1 + c3ρ) δν

γβr

Hence the generator X is

X = c3 ∂t + (c1u+ c2) ∂u +

{
c1 + c3ρ

γ
w +

(
c4 −

(c1 + c3ρ)δν

γβr

)
ert +

(c1 + c3ρ)δν

γβr

}
∂w

with real constants c1, c2, c3, c4 and the Lie algebra is spanned by

v1 = ert∂w, v2 = ∂u, v3 =
ρ

γ

(
w +

δν

βr
(1− ert)

)
∂w + ∂t, v4 =

1

γ

(
w +

δν

βr
(1− ert)

)
∂w + u ∂u

with the following composition table 1. The optimal system is determined using techniques in Olver (1993);
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Table 1: Composition Table with the (i, j)-th Entry [vi, vj ].

v1 v2 v3 v4

v1 0 0 (ρ− rγ)

γ
v1

1

γ
v1

v2 0 0 0 v2
v3 − (ρ− rγ)

γ
v1 0 0 − δν

γβ
v1

v4 − 1

γ
v1 −v2 δν

γβ
v1 0

Table 2: Actions of the Adjoint Representation of G on g with (i, j)-th Entry Ad(exp(εvi))vj .

Ad v1 v2 v3 v4

v1 v1 v2 v3 − ε

γ
(ρ− rγ)v1 v4 − ε

γ
v1

v2 v1 v2 v3 v4 − εv2
v3 e

ε
γ (ρ−rγ)v1 v2 v3 v4 +

δν

β(ρ− rγ)

(
e

ε
γ (ρ−rγ) − 1

)
v1

v4 e
ε
γ v1 eεv2 v3 −

δν

β

(
e

ε
γ − 1

)
v1 v4

Chou and Li (2001); Hu et al. (2015). Given a Lie group G and its associated Lie algebra g spanned by
vector fields {v1, v2, . . . , vn}, the actions of the adjoint representation of G on g is tabulated in table 2 with

Ad(exp(εvi))vj =

∞∑
l=0

εl

l!
(ad(vi))

lvj = vj − ε[vi, vj ] +
ε2

2
[vi, [vi, vj ]]− · · ·

Denote the generic element v ∈ g as v =
∑n

i=1 aivi. The general adjoint transformation matrix A is
constructed by the product of individual adjoint transformation matrix Ai, i = 1, 2, . . . , n which in turn is
constucted using table 2. Here we have

A1 =


1 0 0 0
0 1 0 0

−ε1(ρ− rγ)

γ
0 1 0

−ε1
γ

0 0 1

, A2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 −ε2 0 1

, A3 =


e

ε3
γ (ρ−rγ) 0 0 0

0 1 0 0
0 0 1 0

δν

β(ρ− rγ)

(
e

ε3
γ (ρ−rγ) − 1

)
0 0 1

, A4 =


e

ε4
γ 0 0 0
0 eε4 0 0

δν

β

(
e

ε4
γ − 1

)
0 1 0

0 0 0 1

 .

A = A1A2A3A4 =


e

ε3(ρ−rγ)+ε4
γ 0 0 0
0 eε4 0 0

δν

β

(
e

ε4
γ − 1

)− ε1(ρ− rγ)

γ
e

ε3(ρ−rγ)+ε4
γ 0 1 0( δν

β(ρ− rγ)
− ε1
γ

)
e

ε3(ρ−rγ)+ε4
γ − δν

β(ρ− rγ)
e

ε4
γ −ε2eε4 0 1


A function φ on g is called an invariant if φ(Adg(v)) = φ(v) for all g ∈ G and v ∈ g. By solving the system
of equations

(a1β − a3δν)
∂φ

∂a1
+ a2βγ

∂φ

∂a2
= 0, (a3(ρ− γr) + a4)

∂φ

∂a1
= 0, (a1β(ρ− γr) + a4δν)

∂φ

∂a1
= 0, a4

∂φ

∂a2
= 0

the invariants in our case are a3 and a4. By examing the compatiblity of the equation system ( ã1 ã2 ã3 ã4 ) =
( a1 a2 a3 a4 )A for the representative optimal element ṽ =

∑n
i=1 ãivi and the associate invariants, the optimal

system of g is determined. Adopting the heuristics in Hu et al. (2015), there are three cases to be considered:

1. a3 = 1, a4 = c 6= 0: ṽ = v3+c1v1+c2v2, c1, c2 ∈ R with ε1 = −γ
ρ−rγ+c

{(
c+ δν

β

)
a

1
γ

2 −a1− δν
β

}
, ε2 = 1−c2

c a2,

ε3 = 0, ε4 = − ln a2; if c = 0 then ṽ = v3 + c1v1 + v2, c1 ∈ R with ε1 = −γ
ρ−rγ

{
δν
β a

1
γ

2 − a1 − δν
β

}
, ε3 = 0,

ε4 = − ln a2.
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2. a3 = 0, a4 = 1: ṽ = v4 + c1v1 + c2v2, c1, c2 ∈ R with ε1 = γ a1 − γ c1a
1
γ

2 , ε2 = (1 − c2)a2, ε3 = 0,
ε4 = − ln a2.

3. a3 = 0, a4 = 0: ṽ = v1 + v2 with ε3 = ln a2−γ ln a1

ρ−rγ , ε4 = − ln a2.

(
a1 a2 a3 a4

)
A =a1 e ε3(ρ−rγ)+ε4

γ + a3

(
δν
β

(
e

ε4
γ − 1

)
− ε1(ρ−rγ)

γ e
ε3(ρ−rγ)+ε4

γ

)
+a4

((
δν

β(ρ−rγ) −
ε1
γ

)
e

ε3(ρ−rγ)+ε4
γ − δν

β(ρ−rγ) e
ε4
γ

)
eε4(a2 − a4ε2) a3 a4


The optimal system is {v1 + v2, v4 + c1v1 + c2v2, v3 + c1v1 + c2v2}, c1, c2 ∈ R.

5. Invariant Solution of Merton’s Equation

The linear combination of A1, A2, and A4 that is of the form

1

γ

(
w +

δν

βr
+ c1 e

rt

)
∂w + (u+ c2) ∂u, c1, c2 ∈ R

belongs to the Lie algebra admitted by Merton’s equation. Integration of

dw
1
γ

(
w + δν

βr + c1 ert
) =

du
u+ c2

suggests that

u = g(t) ·
(
w +

δν

βr
+ c1 e

rt

)γ

+ c2

with g(t) to be determined, is an invariant solution. Let

Ψ(t, w) = w +
δν

βr
+ c1 e

rt

then Ψt = r c1 e
rt, Ψw = 1 and

uw = g γΨγ−1, uww = g γ(γ − 1)Ψγ−2, ut = g′ Ψγ + g γΨγ−1 r c1e
rt.

We now inspect each term of (1):

δ2β
γ
δ

γ
e−

ρ
δ tu

− γ
δ

w =
δ2β

γ
δ

γ
e−

ρ
δ t
(
g γΨγ−1

)− γ
δ = δ2γ−

1
δ β

γ
δ e−

ρ
δ t g−

γ
δ Ψγ

(
δν

β
+ rw

)
uw = r

(
Ψ− c1e

rt
)
· g γΨγ−1

= r g γΨγ−1
(
Ψ− c1 e

rt
)

= r g γΨγ − g γΨγ−1 r c1e
rt

u2w
uww

=

(
g γΨγ−1

)2
g γ(γ − 1)Ψγ−2

= −g γ
δ
Ψγ
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Now Merton’s equation (1) becomes

δ2β
γ
δ

γ
e−

ρ
δ tu

− γ
δ

w + ut +

(
δν

β
+ rw

)
uw − δ(µ− r)

u2w
uww

= δ2γ−
1
δ β

γ
δ g−

γ
δ Ψγ e−

ρ
δ t + g′ Ψγ + r g γΨγ + γ (µ− r) gΨγ

= Ψγ
(
δ2γ−

1
δ β

γ
δ e−

ρ
δ t g−

γ
δ + g′ + γ µ g

)
= 0

Equating the terms within parentheses to zero, we have

g′ + γ µ g = −δ2γ− 1
δ β

γ
δ e−

ρ
δ t g−

γ
δ (72)

g satisfies the Bernoulli equation and the solution procedure runs as follows. To solve

g′ + φg = ξ gk (73)

where φ, ξ are functions and k 6= 0, 1, let ζ = g1−k, then ζ ′ = (1 − k)g−kg′. Then (73) turns into
(1− k)g−kg′ + (1− k)φg−kg = (1− k) ξ, so ζ ′ + (1− k)φ ζ = (1− k) ξ, a linear ODE with solution

ζ = e−
∫
(1−k)φ

∫
(1− k)ξ e

∫
(1−k)φ + c e−

∫
(1−k)φ

and g = ζ
1

1−k . Back to the solution of (72); note that k = −γ
δ , so 1−k = 1

δ , (1−k)φ = γµ
δ , e

∫
(1−k)φ = e

γµ
δ t,

and (1− k)ξ = − 1
δ δ

2γ−
1
δ β

γ
δ e−

ρ
δ t = − 1

δ χ e
− ρ

δ t by letting χ ≡ δ2γ−
1
δ β

γ
δ . Now

ζ = e−
∫
(1−k)φ

∫
(1− k)ξ e

∫
(1−k)φ + c e−

∫
(1−k)φ

= e−
γµ
δ t

∫
−1

δ
χ e−

ρ
δ t · e

γµ
δ t dt+ c e−

γµ
δ t

= e−
γµ
δ t · χ

δ
· δ

ρ− γµ
e−

ρ−γµ
δ t + c e−

γµ
δ t

=
χ e−

ρ
δ t

ρ− γµ
+ c e−

γµ
δ t

Determine the constant c using the boundary condition ζ(T ) = 0,

0 = ζ(T ) =
χ e−

ρ
δ T

ρ− γµ
+ c e−

γµ
δ T =⇒ c = −χ e

− ρ−γµ
δ T

ρ− γµ
.

So

ζ(t) =
χe−

ρ
δ t
(
1− e

(ρ−γµ)(t−T )
δ

)
ρ− γµ

,

g(t) = ζ(t)
1

1−k = ζ(t)δ =

χe− ρ
δ t
(
1− e

(ρ−γµ)(t−T )
δ

)
ρ− γµ

δ

= (δ2γ−
1
δ β

γ
δ )δ
(
e−

ρ
δ t
)δ (1− e

(ρ−γµ)(t−T )
δ

ρ− γµ

)δ

=
δ2δβγ

γ
e−ρt

(
1− e

(ρ−γµ)(t−T )
δ

ρ− γµ

)δ

and the invariant solution is

u(t, w) =
δ2δβγ

γ
e−ρt

(
1− e

(ρ−γµ)(t−T )
δ

ρ− γµ

)δ (
w +

δν

βr
+ c1 e

rt

)γ

+ c2, c1, c2 ∈ R. (74)
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6. Discussions and Conclusions

We now take a closer look at the invariant solution (74). Using the terminal condition u(T,W (T )) = 0,
c2 is identically 0. The solution (2) published in Merton (1971, (47)) is the special case of c1 = δν

βγ e
−rT ; any

other c1 ∈ R is equally suitable. Merton himself seemed unaware of the nonuniqueness of the equation with
the only terminal condition as he wrote in Merton (1971, footnote 21, p.390) “the solution is unique” and
referred to a theorem (Merton (1971, Theorem I, p.381)) — the so-called “verification theorem” — cited
without proof for justification.

As pointed out in Sethi and Taksar (1988), the original problem formulation in Merton (1971) is flawed
for not considering the possibility of bankruptcy: the wealth level may be negative during the investment
period if not controlled. Sethi and Taksar (1988) scrutinized the solution and derived optimal rules in
Merton (1971) for all feasible parameter ranges of the HARA utility function and found several questionable
issues originated from the positive probability of being nonpositive.

One of the remedies proposed in Sethi and Taksar (1988) is to recast the problem along the lines of
Karatzas et al. (1988), replacing (7) with

E0

{∫ T0

0

e−ρτ U(c(τ)) dτ + Pe−ρT0

}
(75)

where T0 ≡ inf{t ⩾ 0 : w(t) = 0} is the hitting time and P is the natural payment level to be specified
beforehand. It is shown in Karatzas et al. (1988) that optimal policies are determined according to the value
of P as P varies between ρ⋆ ≡ U(0)

ρ and

P ⋆ ≡ ρ⋆ − U ′(0)λ−+1

ρλ−

∫ ∞

0

dθ
U ′(θ)λ−

,

where λ− is the smaller root of the equation κλ2− (r−ρ−κ)λ−r = 0, κ = (α−r)2

2σ2 . Another route suggested
by Sethi and Taksar (1988) is to add a proper boundary condition at u(t, 0), which is in line with our present
pure mathematical reasoning.
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