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0.1 Prerequisites

Proposition 0.1 (Green Formula).
/(E-AH—H-AE) dv
Q
= / (ExculH +EdivH — HxculE — HdivE)-vdo
r

If div EF = div H = 0, then

/ E -curlcurl H — H - curl curl EdV (0.1)
Q
= / (E xcurlH— H x curl F) - vdo (0.2)
r
—/(V><E)~curlH—(V><H)-curlEda (0.3)
r

Proposition 0.2 (Stratton-Chu Representation Formula). If £, H € C*(Q,)NC(Q, U
') satisfy Maxwell equations in €2, and the Silver-Miiller radiation condition, then for
xr € Q+

E(zx) = curl/FV(x) X E(y)®(z,y)do(y)
+ % curl curl/F v(y) x H(y)®(z,y)do(y)
H(z) = curl/F v(z) x H(y)®(x,y)do(y)
- écurl Curl/rz/(y) X E(y)®(z,y)do(y).
Proposition 0.3 (Far Field Patterns).
B(3) = ik x| {vly) % Bly) + () x Hlw) x e 7 da(y
(@) = ik x [ {u(0) x H5) = (o) x Bl) x 2} doty)
Proposition 0.4 (Rellich Lemma). If E,H € C'(2,) is a radiating solution of

Maxwell equations such that the electric far field pattern vanishes identically, then

0.2 Reciprocity Relations

Assume z,2 € Q,, 2,d € S, p,q € R3.
Given the incident electromagentic wave

Eév(l‘, d7 p) = %Curlx Cuﬂx peik}x-d — Zk(d X p) X deik?.l‘-d’
H\1>v<x7 d,p) = curl, peikx'd = ik(d x p)ez‘k;c-al7
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the scattered field is denoted by
EL(x,d,p), H(r,d,p)
with corresponding far field pattern
EZ(@,d,p), HI(Z,d,p).
Given the incident dipole
El(z,z,p) = % curl, curl, p®(z, z),
Hli)(x, z,p) = curl, p®(z, 2),
the scattered field is denoted by
E(x,z,p), Hy(r,z,p)
with the corresponding far field pattern
EX(%,2,p), HZ(%,2,p).

The total field is denoted by

Ey(x,d,p) = Ey(z,d, p) + Eg (2, d,p)
Hy(x,d,p) = Hy(x,d,p) + Hy (x,d,p)
Ey(z,2,p) = Ey(z,2,p) + E}(z,2,p)

Hy(x,z,p) = Hy (2, 2,p) + Hy(x, 2, p)

Theorem 0.1 (Mixed Reciprocity Relation).
p- E\?V(Z7 _ia Q) =dmq - ESO@» Zap)

Proof. From proposition (@) we have

dmq- EX(3,2,p) = / V(y) x By, 2,p) - Hi(y, —,q)
I
+v(y) x Hy(y, 2,p) - Ey(y, —%,q) do(y) (0.4)

From Green formula (@) we have

/FV(y) X Ej(y, z,p) - Hy(y, =, q)
+v(y) X Hy(y, 2,p) - By, =2, ¢) do(y) =0 (0.5)
Add (@), (@) and apply the boundary condition
v(y) x Ew(y,—2,q) =0 Vyerl

we have

dmq- B2 (3, 2,p) = / v(y) % B3y, 2.p) - Huly, —,q) do(y) (0.6)



From Stratton-Chu representation,

By (e —q) = el [ 1ly) x Byl ~5.0)0(z,) do(y)
T

+ %Curl curl/ v(y) x HS (y, —,q)®(z,y) do(y) (0.7)
r

From Green formula (@),

0= cutl [ v(y) x Ei(y, ~50)2(z,y) do(y)
r
+ %curl curl/ v(y) x Hi (y,—2,q)®(z,y)do(y) (0.8)
r
Add (@), (@) and apply the boundary condition
v(y) X Ew(y,—2,¢) =0 VyeT

we have

E(z,—,q) = %Curl curl/ v(y) X Hy(y, —,q)®(z,y) do(y) (0.9)
r

From (@), the identity

p - curlcurl,{a(y)®(z,y)} = a(y) - curl curl,{p®(z, )},

and the boundary condition

v(y) x El(y, z,p) = —v(y) X EX(y,z,p) Vyerl

we have

p- Bz —2.0) = L p-curleurl / v(y) x Hy(y, —i.q)8(z,y) do(y)
-1 / v(y) % Hyly, —i.q) - curleurl{p®(z, )} do(y)
= /F v(y) x Hyly, —2,q) - Ey(y, 2,p) do(y)
= —/Fy(y) X E}(y, 2, p) - Hy(y, —%,q) do(y)
— /Fy(y) X E5(y,z,p) - Hy(y, —2,q) do(y),
which equals (D.6). -

Theorem 0.2 (Reciprocity Relation).

q-EX(2,d,p)=p- Ey(—d,—1,q)
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Proof. Apply Green formula (@) to El in Q_, E5 in Q, we have

/F v(y) x Ei(y,d,p) - Hy(y,—2,q)
—v(y) x Ey(y, —i,q) - Hy(y,d,p)do(y) =0 (0.10)

/ v(y) x By, d,p) - HE(y—, 0)
T

—v(y) x Ey(y, =2, q) - Hy(y, d,p)da(y) =0 (0.11)
From proposition (@) we have

Amq - B2(2,d,p) = [ v(y) x Ey(y,d,p) - Hy(y, —%,q)

r
+u(y) x Hy(y,d,p) - Ey(y, —&,q)do(y) (0.12)
Interchange p, q and d, z respectively in (), we have

dnq - B (5. d,p) = / v(y) x B (y,—i,q) - Hi(y,d, p)

+v(y) x Hy(y, —2,q) - B\ (y,d,p)do(y) (0.13)

Subtract () with () and add (), (), together with the boundary condi-

tion
v(y) X By(y,d,p) = v(y) X Ey(y,—2,p) =0 VyeT
the result follows. OJ

0.3 A Uniqueness Theorem

Theorem 0.3. If D, and D, are two perfect conductors such that the electric far field
patterns coincide for a fixed wave number, all incident directions and all observation
directions, then Dy = D,.

Proof. Let U be the unbounded component of R\ (D; U Dy). By Rellich lemma,
B (z,d,p) = B} 5(x,d,p) VreUdp¢€ S2.

By mixed reciprocity relation,
Efvfl(:%,z,p) = E\‘,’V‘fQ(i‘,z,p) VzeUz,peS°

Again by Rellich lemma,
ES (v, 2,p) = B} o(%,2,p) Vo,z€Up€ S2.

Assume D; # Dy, then 3% € U such that # € 9D;,# ¢ D,. Construct {z,}
such that z, =1 + %V(Zf) € U for sufficiently large n. From the well-posedness of the
solution on Dy, ES »(7,T,p) is well-behaved. But

ES (%, 2, q) — 00 as z, — T and given pLuv(Z)

in order to fulfill the boundary condition with the incident dipole E;vl(fv, Zn, D), which
becomes unbounded as z, — .
]
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0.4 Factorization of the Far Field Operator

Here we set the function spaces which will be of use later.
L L3 ={v|v € Ly(I)% v-v =0, divrv € Ly(I)}.

2. LT ={v|v € Ly(I)*, v v =0, curlp v € Ly(I')}.

oy . . . 1 i . .
Proposition 0.5. v — v x v is an isomorphism from L™ to LY with inverse

w— —V Xw.

Definition 0.1. The Maxwell problem is to find a pair of radiating solution (E, H) €
Hyoe(curl, R3\ Q) to the Maxwell equations

curl B —ikH =0
curl H +1kE =0

in ]RS ) with the boundary condition
vx FE= f

where f € H2(div,T'). The data-to-pattern operator G : Hz(div,T') — L2(S?) is
defined by
Gf =E>

where E* denotes the far field pattern of the radiating solution E of the Maxwell
problem.

Definition 0.2. The far field operator F : L2(S?) — L2(S?) is defined by
(Fg)(3) = / E>(3,0)9(6) do(6), # e S (0.14)
SQ

Proposition 0.6. 1. F — F* = £LF*F where F* denotes the L*-adjoint of F.
2. The scattering operator S = I + ;r—kzF is unitary.

3. F is normal.

Proof. Let g, h € L?(S?) and define the Hergoltz wave functions v', w' with density g, h
respectively:

V() = / g(0)e* 0 do (6), r€R3
S2
wi(z) = / hO)ek? do(6), € R®
S2
Let v, w be solutions of the scattering problem corresponding to incident fields v', w!,
with scattered fields v* = v —v', w® = w—w' and far field patterns v>°, w™ respectively.

Apply Green theorem in Qr = {z € R*\ Q : |2| < R} with sufficiently big R, together
with the boundary condition we have

0= / (VAW — wAv) dV (0.15)

= / (w x curlv — v x curlw) - vdo. (0.16)
|z|=R
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Decomposing v = v' +v* and w = w' +w*, we split () into the sum of the following
four parts:

/| (E x curl v’ — v’ x curlﬁ) -vdo, (0.17)

/=R

/|_R (w® x curlv® — v° x curlw?) - vdo, (0.18)

/| (E x curlv® —v® X Curlﬁ) -vdo, (0.19)
/=R

/| (w® x curlv’ — o' x curlw®) - v do. (0.20)
/=R

The integral (i)l/) vanishes by applying Green theorem in B = {z : |z|] < R}. To
evaluate the integral (0.18), we note by the radiation condition

S 1

ws X T — T curlws = O <ﬁ) (0.21)

S><A—l—1 1v° =0 ! (0.22)

v* X T+ —curlv® = = :
ik 72

and relations between scattered fields and far field patterns
- —ikr _ 1
o)
4mr r
ikr 1
v {Umo(_)}
4mr r

(ws x curlv® — v° x curlwd) -
X

one obtains

=ik (WS x (& x v°) +0° X (& x wd)) - &
= 20k (@ 0 — (@ )" 7))
= 2ik ws - v°
ik — 1
=g O (‘)
Hence
/ (ws x curlv® — v° x curlw’) - vdo
lz|=R
L —— ik
— @ Szwoo -0 do = @ (ngFh)L2(§2)

To evaluate the integral (), one note that it can be rearranged as
/ (E x curl v® — v® X curlﬁ) -vdo (0.23)
lz|=R

=— / (2 x curlv®) - wi + (2 x v°) - curl wi do (0.24)
|z|=R



Substitute
wi(z) = / h(0)e* 0 4o (8),
S2

curl Wi (z) = ik / (h(0) x 0) =% dor(9)

SZ

into (), the integral becomes
- / (z x curlv®) - / h(0)e **% do(9) do(z)
lz|=R S2
_ / (i x v) - ik / (h(0) x 0) e do(6) do(z). (0.25)
|z|=R S2

From h(#) -6 =0 and 0 - 6 = 1, by formulae

ax(bxc)=bla-c)—c(a-b)
a-(bxc)=-b-(axc)

we have

h(0) - (z x curlv®) =h(0) - {(z x curlv®) — (0 - (& x curlv®))}
=h(0)-{0 x ((z x curlv®) x 0)}

and
( xv°) - (h(0) x 8) =h(0) - (0 x (2 xv°))
Substitute into (), the value of the integral () is

- /S2 /II—R {h(0) - (& x curlv®) + ik (& x v°) - (h(0) x 0)} e~ do(x) do(0)
- _/ Mo) / {6 (& x curlv®) x 6) +ik 6 x (& x v*)} e do(w) do (0)
S2 |z|=R

By the same token, the integral () is (9, Fh)pa(s2y- Hence

ik
0= (9, Fh)L2(s2) — (Fg, h)L2(s2) + 2 (Fg, Fh)L2(s2) ’
the identity
For =K pp
872

follows.
To see that S is unitary, we compute

SS_(I—@F> <I+@F>
. . 2
g R e K

F*F
82 872 6472
=1.
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Thus S is injective as well as surjective, for S is a compact perturbation of the identity.
Therefore S* = S~! and SS* = I. Comparing S*S and SS* we can see that F*F =
FF*, hence F'is normal.

[
Proposition 0.7.
F=-GN*G".

Proof. Define auxiliary operator H : L2(S?) — H~2(div,T) as

(Ho)(@) = v(x) x / 9(0)e* do(0), z €T. (0.26)
S2
The adjoint operator H* : H=2(curl, ') — L2(S?) is
(H*f)(0) =0 x (9 X /(V(x) x f(x))e k=0 da(x)) . feSs (0.27)
r

This can be verified by

(1.49) = [ ) {via) x [ g@)ere2ao(o) | aote)
- / [ @) 1) x g08) =" da(0) do
/

=/Sg/
Lo
Lok
J
J
J

= ("

x g(0)) e"** do (x) do(0)

()) - g(0) 7" do () do (0)

) % v2)) x 0)) - 9(0) e *do(z) do(6)
0 x (/ 2) x v(z)) e~ * dor () x 9)} . 9(0) dor(0)
( < v(z)) e da(m)) x e} 900) do(0)
0 x ( / () % ) e do(o) ) | 5001 dot)

. 9)-

'N:\»

w2
0

[

2]
~ —— /A

(]

Given tangential f(z), define u(z) by

u(z) = curl curl, /F (v(y) x f(y)) ®(z,y)do(y), zcR*\T.

From the asymptotic relation

gikla—y] geklal (. 1
curl curl, {a(y)‘x — y\} =k T {e T x (2 xaly)+ O (\x!)}

the far field pattern of u can be seen as H*f.
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Define the electric dipole operator N as

(V) = via) x culeul [ (v) % f@) Blog)doly), weT. (029
Then
W'f=GNF. (0.29)
We have
F=—GH. (0.30)
hence F' = —GH = —GN*G*. O

Proposition 0.8. S(Ny, ) > 0.
Proof. Define

v(x) = curl/r v(y) X p(y) ®(z,y)do(y), v € R\ T. (0.31)
Note that
1
ve(z) = pV/FVx(I’(%y) x (1(y) x ¢(y)) do(y) F 5v(z) x (v(x) x p(z))
—pv [ V.0(a,0) % () % (0) doly) £ (o)

and dive = 0, Av + k*v = 0.
set a = v,b = v in vector Green formula

/a-Ab—l—curla-curlb—i—divadivb:/—(Vxcurlb)~a+(u-a)divb
Q r

we can see that
(Np,p) = (v x curlv,vy —v_)
= /V x curlv - (oy —v-)do
r

:/churhwﬁda—/uXcurlv~v_da
r

r

:—/ k‘2|v|2—|curlv|2d\/+/ T x curlv - vdo
QUBR

lz|=R

1
- —/ E*[v|* — | curlw|* dV + ik / lv|> do + O (—)
OUBR l2|=R R

Take the imaginary part and let R — co, we have

R—o00

k
— : 2 _ 0|2
(N, ) =k lim o lv|*do = 62 /SZ |v>°|*do > 0.
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Proposition 0.9. Given a bounded Lipschitz domain (2, the followings hold:
1. There exists a regular family of cones {(}.

2. There exists a sequence of C'*° domains §2; C 2 and corresponding homeomor-
phisms A; : I' = I'; such that sup,p |A;(x) — x| — 0 as j — oo and for all j and
all z € T, Aj(z) € ((x).

3. There exist positive functions w; : I' = R* bounded away from zero and infinity
uniformly in j such that

(a) For any measurable set V C T’

/Cdde':/ dO’j.
14 A; (V)

(b) wj(x) — 1 pointwise a.e. for x € I
4. v(Aj(x)) — v(z) pointwise a.e. for z € I".

5. There exists a real-valued C* vector field h such that for all j and x € T,
v(A;(z)) - h(A;(z)) = k > 0, where k depends on the Lipschitz character of Q.
Without loss of generality, x < 1.

Lemma 0.1 (Rellich identity). For a complex-valued C>®(Q) vector field E and a
real-valued C*(R?) vector field h

1 _
/{—\EP(h v) = R((E-h)(E- V))}da
o l2
- / %{%|E|2divh —(E-h)divE—-E-(Vh)E+ (hx E) - curlE} dv, (0.32)
Q
where E - (Vh)E denotes the quadratic form Y ;(D;h;) E;E;.
Proof. 1t is evident from
(1 —
d1v{§|E| h—R((E- h)E)}
1 _ _ _
- m{§|E|2divh —(E-h)divE ~E-(Vh)E+ (h x E) - curlE}

and Divergence theorem. [

Lemma 0.2. For a complex-valued C'*(£2) vector field F
/ |EI*do < / |Ey|? do +/ |E|? + | curl E]* + |div E|*dV (0.33)
r r 0
/ |E|?do < / |Et|2da+/ |E)? + |curl E|* + |div E|*dV. (0.34)
r r Q

If E € C=(2,) and decays at infinity then the above hold with Q replaced by €.
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Proof. Let h be the real-valued vector field which satisfies proposition @, item (B), ie.
h-v >k >0onI. Decomposing E, h into mutually orthogonal parts £ = E; + Fi,
h = hy + h,, we have

1 —
SIBR(h - v) = R((E - B)(E - v)
1 1 —
= B v) — SBP (- v) — R((E - h) (B -v).
thus the Rellich identity () is rewritten as
1 1
/—|Et|2(h-1/)da:/—|En|2(h-u)da+91+®2, (0.35)
r2 r2
where
0= [ R(E h)(E,-v) do,
r
1 — — —
0, = / ?R{é\EPdivh (E-h)dvE—E-(Vh)E+ (hx E)- curlE} av
Q
In view of () and h-v > Kk > 0 we have
1 2 1 2
—k | |EiJ*do < = | |Ey|*do + ©1 + Oa. (0.36)
2 Jr 2 Jr
By Young’s inequality
1
ab<€a2+gbz Ve >0
() becomes
/ E[2do < / B, do +/ B2+ |E||curl E| + ||| div E|dV (0.37)
r r Q
Similarly, from () and (H) h-v >k >0 we have

1 1
—/-@/|En|2da< —/|Et|2da—@1—®2
T 2 I

2 1 (0.38)
<5 1B+ 181l + [,
r
hence by Young’s inequality () becomes
/\E|2da§/|Et|2da+/ |E|)? + |E|| curl B| + |E|| div E|dV. (0.39)
r r Q

Once by Young’s inequality
/ B + |E|| curl E| + |E|| div E|dV < / EP + |wl B + |div E2dV,
Q Q

and we may rewrite (), () into (), () respectively. O
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Lemma 0.3. For the complex-valued C*°(Q) vector field E which satisfies (A+k%)E =
0 and div E =0 in €,

| Ell Loy + || carl B[,y = [[v x CurlE||H,%(diVF)
Proof. Setting @ = E and b = E in vector Green’s theorem
/ alAb—+ curla - curlb+diva - divh = /(V X a)-curlb+ (v-a)divbd
Q r

we have
/(1/ x E)-curl E+ (E -v)divEdo = /Q |curl B + | div E|* — K| E|*dV.
r
The above identity becomes
/Q |E)? + | curl E)* + | div E|)* dV
< ‘/(V x E)- curlEda‘ + / |E - v||div E| do.
r r
Once by |E - v| < |E| and Young’s inequality
/|E-y||divE|da< (smau)/|E|2do—+(1arge)/|divEy2da,
r r r
which turns () into
/ v x E|*do < / |E - v|]* + |div E|*do + ‘/(V x E) -curlEda‘. (0.40)
r r r

Together with the result of lemma @, we have

1Bl Loy S 1Bl Loy + [(curl E) ||z, + || div B 2y,

. (0.41)
1Bl Loy S B oy + [(carl B¢l Loy + || div Bl Ly
By writing H = - curl E, () becomes
1Bl 2oy S 1Bl Loy + 1 Hell ooy, (0.42)
1] oy S 1Bl oy + [[Hil| oy (0.43)

From curlcurl E = —AFE 4+ Vdiv £ we are free to permute £ and H in (), ()
and obtain

| H || 2oy S 1 Hullzo@y + [ Bl o) (0.44)
I H 2oy S 1 Hl o) + 1 Bl Loy (0.45)

By (0.49) and (D.44),

1EN 2oy S 1Bl oy + [[Hell2ar)
S B Loy + [ Hill 2oy + ([ Hull o
S Bl Loy + [1H | ) (0.46)
S By + [[Hall o) + Bl o)
S Il Loy + 1Bl Loy
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From (D.46), (0:44) and ||Eu| o) + 1Hallzow) S I o) + I1H [ ey, we have
1] Loy + 1 H || 2oy = | Bl oy + 1 Hall 2o (0.47)

Once by permutting £ and H in () we have

[ oy + 11l Loy = [Hill oy + [ Eall o), (0.48)
BY 11 g gy = I a0y + 1 dive()l ey and dive(v x E) = —v - curl E, (0.45) is
written as
1E| L2y + [ curl B[ @) & v x curl E| s } (aive) (0.49)
as claimed. n
Proposition 0.10. —(N;p, @) > c[|p]]*.
Proof.
1
—{(N;p, ) :/ lv|* + | curl v|* dV + / [v|*do + O (—)
OUB#R lz|=R R
As R — oo,
—(N;p, p) = / o> + | curlv]* dV > / v + | curlv|? do.
R3 r
Recall that
v =cutl [ vly) x olu) 2(e.9) doy)
r
Set £/ = v in lemma @, we have
[Vllzoey + [ curlv]l ooy = v x curlof| gy
Hence
2 2 2
~(Nigyg) > clly xeurloly = elNigly el
O

Proposition 0.11. For z € R? and a fixed d € S?, define ¢, € L*(S?) by
0. (%) =ik (2 x d)e™™* i€ §?
then ¢, belongs to the range of G if and only if z € 2.

Proof. Assume first z € Q. For z € R3\ Q define

ezk|m—z|

v(z) = curl, d®(x, z) = curl, d prp—
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and f = v|p. The far field pattern of v, denoted by v, is
v>®(2) = ik (2 x d) e* &€ S?

which is identical to ¢,. From Gf = v> = ¢,, ¢, belongs to the range of G.

Now assume z ¢ ) and there exists f with Gf = ¢,. Let v be the radiating
solution of the Maxwell problem with boundary data f and v* = Gf be the far
field pattern of v. Note that the far field pattern of curld ®(-, z) is ¢,, from Rellich
lemma v(z) = curld ®(z, z) for all x outside of any sphere which contains both z
and . By analytic continuation, v and curld ®(-, z) coincide on R*\ (Q U {z}). But
if z ¢ Q, then curld ®(z,2) is singular on z = z, while v is analytic on R? \ €,
a contradiction. Otherwise if z € I, then z — curld ®(x,z) for x € T,z # z, is
in H2(I). But curld®(z, z) does not belong to Hi(curl, R3 \ Q) or H(curl,Q), for
curl ®(x,2) = O (1/]x — z?) if . — 2.

O

0.5 An Illustration Using Spherical Wave Expan-
sion

In this section we follow the notations and treatments in [? | closely.
The spherical Bessel and Hankel functions which denoted by j,(x), n(z), h(z),

hl(l)(x) are defined as
) =\ 3y ) 0.50)

\/7 (0.51)
i) =[5 (J,+ (2) + Ny (0)) 02)

W) = [ () = 1Ny @) 0.5)

The spherical Bessel functions satisfy the recursion formulae
filz) =
filz) =

(fier(@) + fira (@) (0.54)
(fima(z) = (14 1) fra (@) (0.55)

2l+1

21+1

where f;(z) is any one of the function j;(z), ni(x), h(z), hl(l)(x).
The orbital angular momentum operator L is defined by

1
L=-2xV (0.56)
7
where x is the position vector.

Define the operators L, L,, L. to be the cartesian components of the orbital angular-
momentum operator L respectlvely, and let L2 = L2 + L2 + L2
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1 0 (. 0 1 0 m m
B {sinﬁ‘a—ﬁ (smﬁ%> N sin2198_<p2}yl =+ 1y

. io [0 0
Ly=L,+iL,=¢e" (%—l—zcotﬁagp)

, 0 0
L =L,—iL,=e "% ——
:—tLy=e ( aﬁ+ZCOt08g0)

The vector spherical harmonic X;*(1J, ¢) is defined by

1
X", ) = WLYZ"L(&,@)

With z = Hi_l’ we have the orthogonal relations

/ X7 X0 dQ = 61

/X_[W(fof,”/)dQ:O

LY = U= m) I+ m o+ Dy
LY = I+m)—m+ Dy

LY =mY™
V x fi(r) X" (9, @)
10
=i I DMy (0.0) 4 1 2 () 2 x X0 9)

where f;(x) is any one of the function j;(z), n;(x), h(z), hl(l)(x).

gi(kr) = AR (k) + AP RE (k)

/fl Xlr’n d§) = flgléll’ mm/

/fl VX7 (V% gi(r)XI) dQ = 0

(0.57)

(0.58)
(0.59)

(0.60)

(0.61)

(0.62)

(0.63)

(0.64)

(0.65)

(0.66)
(0.67)

(0.68)

(0.69)

(0.70)

(0.71)
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/V X (P X[ (V x gi(r) Xi) dQ2
0, —0
- k 6ll’ mm/ (flgl + ]{521 2 9r ( f 87"(rgl))) ’ <072)

where f;, g; are any of the spherical bessel functions.
The addition theorem for spherical harmonics

l

4m ——

Blecosy) = 5= D V(W0 )Y (0,¢) (0.73)
m=—I

where cosy = cos v cos ¥ + sind sin v’ cos(p — ¢’)
The multipole expansion of the plane wave is

1
Zzl 47 (204 1) (jl(kr)xlﬂ + EV X jl(kr)Xlﬂ> (0.74)
=1

This is shown as follows. First note the Jacobi-Anger expansion

o0

e®* =i (21 + 1)y (kr) Pi(cos ) (0.75)
=0

= Z 4 (20 4 1), (kr) Y, (cos ) (0.76)

where 7 is the angle between k and x.
We consider an equivalent expansion for a circularly polarized plane wave with
helicity 4 along the 2 axis:

E(z) = (g1 £ igy)e™ (0.77)
B(z)=¢3 x E = FiE (0.78)
B =Y {ai(l, m)ji(kr) X" + %bi(l, M)V x jl(kr)le} (0.79)
B(z) =) {%ai(l, m)ji(kr) X™ 4 bi(l,m)V x jl(kr)le} (0.80)

From the orthogonality of X", we have
0 (1, m)ji(kr) = / X7 - E(x) d0 (0.81)

ba (1, m)ji (k) = / X7 . B(x) dO (0.82)
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In view of the expression of F/, B and the definition of X", after some manipulation
we observed

e lm)ilhr) =~ / LV 40 (0.83)
. VU EMAFmA+L) [ ST e
ax(l,m)j(kr) = T /Yl Eleihz g0 (0.84)

Insert the Jacobi-Anger expansion for ¢?**, the orthogonality of ¥;™ leads to

ax(l,m) = i'\/4m (20 + 1)6, 41 (0.85)

From B = FiFE, we obtain immediately
b:l: (l7 m) = :Fiai(lv m) <086)

The scattered electric field is
S (20 +1)-
=3 Z +

Ji(k) o L Eg(k) + 51(k) »
(hl<k> b Ekh;(k)m;(zf)Whl(’”‘)Xz) (0.87)

The far field pattern of the scattered electric field is

P) = 2_—; S Var2+ 1)
=1

Jik) . v Kgi(R) + (k)
(hl(k) PxXTF kR (k) + hi(k) Xi ) (0.88)

A

Hence {X;*!, % x X;*'} are the eigenfunctions of the far field operator with corre-

:I:z\/7r (2041) kjj(k)+51(k) —iy/m(20+1) Jl }
hi(k)

sponding eigenvalues { TR (k) hy (k) k

We wish to compute

t X Ey, om 2

where the index m runs through the eigenpairs {¢.,, A, } of the far field operator and
(-,-) denote the L?(S?) inner product. Note that

1
& X By Zzl 4 (20 + 1) (jl(k:r):% x X ¥ H%(r;‘,(lm«)))(fﬂ) (0.90)
=1

In view of the vector formula

(axb)-(cxd)=(a-c)b-d)—(a-d)(b-c)
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we have
(@ x X7 - (2 x Xph) = (- 2) (X X — (@ X)X - 1) (0.91)
=X X (0.92)

Together with orthogonal relations () and (), the infinite sum () becomes

4y/m (k)2 TE 2 (rg(kr)) 2
- Z\/2l+1( o) + e T (0.93)
! hy (k) khy(k)+h (k)

We wish to investigate the convergence of this sum.
Using the asymptotic relations of j;(k), hi(k)

k) = 5= _k(lzl =y <1 +0 G)) (0.94)
(k) = L3 '%éff ) (1 +0 G)) (0.95)
we have
}Z((ll?) =T 1?3(21 T (1 o G)) (0.56)
i~ (40 (7)) (90
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